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Abstract
An expression for the phase volume fraction in a system with a position-
dependent nucleation rate is derived in the framework of the geometrical-
probabilistic approach. As examples of such systems, the following cases are
considered: (1) nucleation on surfaces, on curves and at points; (2) nucleation
on a finite domain. The volume fractions are derived for both time-dependent
nucleation rate and time-dependent growth velocity for the following systems:
(a) a planar layer with nucleation on the mid-plane, an infinitely long cylinder
with nucleation on the axis and a sphere with nucleation at the centre; (b) random
planes, straight lines and points in infinite space; (c) a spherical domain. The
equivalence of the processes of homogeneous nucleation and nucleation at
points is established. The solutions for both homogeneous and heterogeneous
nucleations are obtained for case (c). It is shown that the finiteness property
results in the qualitative distinction of the volume-fraction time dependence
from that in infinite space: the Avrami exponent in the process of homogeneous
nucleation decreases with time from 4 to 1.

1. Introduction

The probabilistic phenomenological approach to the description of a phase transformation
process is based on the notion of centres of a new phase appearing, around which the accretion
of the substance proceeds at some rate. Correspondingly, two functions are used: the nucleation
rate I (t) of the new-phase centres and their growth velocity u(t). The aim is to derive the
temporal characteristics of the process, such as: the volume fraction X(t) of the new phase,
the size distribution function of the nuclei and the perimeter (in 2D) or the area (in 3D) of the
grain boundaries.

The acceptance of a hypothesis regarding the nucleation-and-growth pattern constitutes
the initial premise of the phenomenological model. Justification of the premises accepted is
carried out in the corresponding field where this model is used, e.g. crystallography. The
purpose of the phenomenological theory is the development of methods for deriving final
results starting from these premises.
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The starting points of Kolmogorov’s model [1, 2] are the following.

(1) The volume in which a phase transformation process proceeds is infinite. Practically, this
implies that L̄ � R0, where L̄ is the mean nucleus size, R0 is the system size.

(2) The nucleation rate may depend on time, but does not depend on coordinates. The
probability of the new-phase centre appearing in volume V in dt ′ is equal to I (t ′)V dt ′.

(3) The initial size Rc of a nucleus is equal to zero. Practically, this implies that Rc � L̄.
(4) The uniformity of the growth rate: all of the nuclei at time t grow at the same linear

velocity u(t). Thus, for example, the growth velocity of a nucleus cannot be a function of
its radius, i.e. depend on the appearance time t ′. More precisely, the growth law allowed is
formulated in reference [1] as follows. The accretion of substance around the new-phase
centre proceeds with the linear rate

ũ(t, �n) = u(t)c(�n) (1)

where �n is a unit vector directed outwards from this centre; the function c(�n) ≡ c(θ, φ) is
such that the extreme points of the vectors of length c(�n) drawn from the origin in all of
the directions �n form a convex surface. Thus, though the growth rate is allowed to depend
on direction, this dependence must be the same at every point.

(5) From this fact, the restriction on the shape of nuclei follows: the principle of geometrical
similarity as regards the shape of nuclei. It may be an arbitrary convex shape, but all of
the nuclei must be geometrically similar to each other and have the same orientation in
the space.

From (1), the size of a nucleus in the direction �n is

R̃�n(t ′, t) = R(t ′, t)c(�n) (2)

where

R(t ′, t) =
∫ t

t ′
u(τ) dτ

is the radius of a spherical nucleus. The increment of the nucleus volume in dt in the direction �n
is equal to dṼ�n(t ′, t) = R2(t ′, t) dR(t ′, t) c3(�n) d�, where d� = sin θ dθ dφ is the solid-angle
element. Hence, the volume of a nucleus at t is Ṽ (t ′, t) = V (t ′, t)c3, where

c3 = 1

4π

∫
�

c3(�n) d� (3)

and V (t ′, t) = (4π/3)R3(t ′, t) is the volume of a spherical nucleus. Setting g ≡ (4π/3)c3,
we obtain Ṽ (t ′, t) = gR3(t ′, t), where g is the shape constant.

As regards the interaction of nuclei during the growth process, two main types may be
singled out [2].

(1) When two nuclei collide, the growth of each of them is stopped in the direction of the
collision front, but continued in an ordinary way into the untransformed region. As a
result, a boundary is formed between these nuclei and a structure consisting of a set of
grains of irregular shape is obtained in the final state.

(2) Two colliding nuclei coalesce as two droplets into one nucleus of larger size.

The KJMA theory [1, 3, 4] deals with the first type only; the models with droplet interaction
are not included in this theory.

In view of the fact that the KJMA theory describes a process at the formal mathematical
level, the fields of its application are diverse and not restricted to problems in crystallography.
Examples of applications are presented, in particular, in the recent work [5], where an extensive
literature relating to this theory is also given. Other examples are presented in reference [2]:
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models of active biological media; models of forming foams; statistical models in the
evolutional theory of populations; models of forming clouds; generally, models of propagation
of signals of arbitrary nature which originate from the disturbance sources appearing randomly.

In the present paper, the extension of the KJMA theory to the case of position-dependent
nucleation rate, as well as to finite systems, is carried out. In other words, the first and second
restrictions on the KJMA model from the list above are removed. To do this, the critical region
method is used. Earlier it was applied by the author to the problem of calculating volume
fractions of competing phases [6]. It should be pointed out that the critical region concept
itself was introduced by Kolmogorov in reference [1], though no specific term for this region
is used therein. The result of Kolmogorov’s approach can be formulated in the following form:
the probability for an arbitrary point O′ of a system to remain untransformed at time t is

Q(t) = exp[−Y (t)] where Y (t) =
∫ t

0
I (t ′)Ṽ (t ′, t) dt ′. (4)

In other words, this is the probability that no centre of a new phase appears inside the critical
region (Ṽ (t ′, t) is its volume at t ′).

In the case of a position-dependent nucleation rate, expression (4) must be replaced by
the following one:

Q(�r0, t) = exp[−Y (�r0, t)] (5)

where �r0 is the radius vector of the point O′.
The functions Y (t) and Y (�r0, t), calculated according to the algorithm of reference [1],

are expressed in terms of an integral over the critical region. So, for the problem considered
here, Y (�r0, t) must have the following form:

Y (�r0, t) =
∫ t

t0

dt ′
∫
Ṽ (t ′,t)

I�r0(�r ′, t ′) d3�r ′. (6)

In the case of several competing phases [6] with nuclei of spherical shape, the following
expression may be written for the kth phase:

Yk(t) =
∫ t

0
dt ′

∫ Rk(t
′,t)

0
Ik(t

′)q(k−1)(t ′, r)(4πr2) dr (7)

where q(k−1)(t ′, r) is the untransformed part of the critical region for the kth phase [6].
In this sense, the case (4) of Y (t) may be thought of as the simplest one. Thus, the

method of Kolmogorov is a ‘differential’ method with respect to time, but an ‘integral’ method
with respect to the spatial variable. That is, the finite quantity Ṽ (t ′, t) is used in deriving
expressions (4), (5).

The proposed method differs from Kolmogorov’s one in that it is a ‘differential’ method
with respect to both time and the spatial variables: the differential of V (t ′, t) is used for
deriving the volume-fraction expression. As a result, the solution is expressed in terms of
integrals over the time variables only, which is convenient for analysis of the dependences
obtained [6]. Therefore, this method, as a ‘finer’ instrument for calculating volume fractions,
is more effective in some cases. In particular, this advantage manifests itself in solving the
present problem: it is natural to operate with dV rather than V in the case of a position-
dependent nucleation rate.

In those problems where this distinction between the two approaches is not significant and
the probabilistic reasoning is like that of reference [1], the use of the result (5) of Kolmogorov’s
approach permits one to get the solution in the shortest way (see sections 3 and 5).

The following two special cases of systems with non-homogeneous nucleation rates are
significant for applications.
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(1) Nucleation on different i-dimensional objects, i < 3: surfaces, lines and points (the
nucleation rate may be represented as a δ-function of the coordinates).

(2) Nucleation on a finite domain G. The nucleation rate at the point A(�r) of the space has
the form of a step function:

I (�r, t) =
{
I0(�r, t) A(�r) ∈ G

0 A(�r) /∈ G.

In a simpler case, I0 does not depend on �r .

This paper is organized as follows. In section 2, the general expression for the volume
fraction for a position-dependent nucleation rate is derived. In section 3, the expressions for
volume fractions of an infinite plate with nucleation on the mid-plane, an infinite cylinder with
nucleation on the axis and a sphere with nucleation at the centre are obtained. The problem
of calculating volume fractions when the nucleation occurs on planes, straight lines and at
points randomly distributed in infinite space is solved in section 4. Sections 5–7 are devoted
to calculating the volume fraction in a spherical domain. A discussion of the results is given
in section 8.

2. Calculating the volume fraction in the case of a position-dependent nucleation rate

Let us introduce the frame of reference with the point O as the origin (figure 1). We seek the
probability dX(t) that the point O′(�r0) randomly chosen in the system will be transformed in
the time interval [t, t + dt]. In order for this event take place, it is necessary and sufficient to
have the fulfilment of the following two conditions:

(1) the point O is not transformed before time t ;
(2) the new-phase nucleus that can transform the point O′ in the time interval [t, t + dt]

appears at any time t ′, 0 � t ′ � t ; we call this nucleus a critical one.

Let Q(�r0, t) and dY (�r0, t) denote the probabilities of the first and second events, respectively.
We deal with nuclei of spherical shape below. The case of an arbitrary shape permitted by
Kolmogorov’s model can be considered similarly without difficulties of principle. Consider
the space-time scheme of the process which results in the fulfilment of both conditions.

O

O' O''
0r
�

r�
R
�

Figure 1. The framework used to derive the expression for the volume fraction in the case of a
position-dependent nucleation rate.
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Let us specify the spherical region of radius R(t ′, t) with the point O′ as the centre—the
critical region. At time t ′ the region boundary is moving towards the centre at the velocity
u(t ′), so the radius decreases from its greatest value R(0, t) ≡ Rm(t) to R(t, t) = 0. As this
happens, the fulfilment of condition (1) implies that the appearance of the new-phase nuclei
is forbidden within this region in the time interval 0 � t ′ � t . In reference [1], the function
Q(t) is calculated from this condition directly. In the present approach, condition (2) is used
for its calculation.

The critical centre appearing at t ′ must lie inside the spherical layer of thickness
dR(t ′, t) = (∂R(t ′, t)/∂t) dt at the distance R(t ′, t) from the point O′. Let it appear in
the volume element dV (�r) in the neighbourhood of the point O′′(�r) (figure 1). This nucleation
process is not Poissonian with respect to either t or �r since the nucleation rate depends on
these variables; i.e. the property of stationarity [7] of this process is not satisfied. However,
we assume the fulfilment of the remaining two properties of a Poisson process:

(a) the probability of the appearance of a centre in the four-dimensional volume element
dt ′ dV (�r) is equal to dP�r = I (�r, t ′) dt ′ dV (�r), and the probability of the appearance of
more than one centre is an infinitesimally small quantity in comparison with it;

(b) the numbers of centres appearing in two disjoint volumes are independent quantities.

In order to get the probability dP�r0(t
′, t) of the appearance of a critical centre at t ′, we

must integrate dP�r over the critical region boundary. To this end, let us introduce the
spherical frame of reference with the point O′ as the origin. The coordinates of the point
O′′ are (R(t ′, t), θ, φ) where R(t ′, t) = |�r − �r0|. The volume element dV (�r) is equal to
dV (t ′, t) d�/4π where dV (t ′, t) = 4πR2(t ′, t) dR(t ′, t). The nucleation rate in this frame
of reference is I (�r, t ′) ≡ I�r0(

�R, t ′) = I�r0(R(t ′, t), θ, φ; t ′) (the dependence of quantities on �r0

is indicated below by an index). We introduce the following notation:

J�r0(t
′, t) = 1

4π

∫
�

d� I�r0(R(t ′, t), θ, φ; t ′) (8)

where the integration is over the whole solid angle.
In the case of an arbitrary nucleus shape permitted by Kolmogorov’s model, the critical

region obviously has the same shape and orientation as the nuclei. In this case, the radius vector
�R(t, t) has the length given by (2) in the direction �n, so I (�r, t ′) = I�r0(R(t ′, t)c(�n), θ, φ; t ′),

dṼ�n(t ′, t) = (1/4π) dV (t ′, t) c3(�n) d� and the expression for J�r0(t
′, t) is the following:

J�r0(t
′, t) = 1

4π

∫
�

I�r0(R(t ′, t)c(�n), θ, φ; t ′)c3(�n) d�. (9)

The critical nucleus appearing at O′′ must have the same orientation as the critical region,
so at time t (when it arrives at the point O), it will be a copy of the latter at t ′.

Thus, we have, for the desired probability dP�r0(t
′, t),

dP�r0(t
′, t) = J�r0(t

′, t) dt ′ dV (t ′, t). (10)

The probability dY�r0(t) of the critical centre appearing in the time interval 0 � t ′ � t is
obtained by integrating (10) over t ′:

dY�r0(t) =
{∫ t

0
dt ′ J�r0(t

′, t)
∂V (t ′, t)

∂t

}
dt. (11)

Thus, the simultaneous fulfilment of conditions (1) and (2) leads to the following equality
for dX�r0(t):

dX�r0(t) = Q�r0(t) dY�r0(t). (12)
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SinceX�r0(t) = 1−Q�r0(t), expression (12) is a differential equation forX�r0(t). Its solution
with respect to the initial condition X�r0(t0) = 0 is

X�r0(t) = 1 − exp[−Y�r0(t)] (13)

where

Y�r0(t) =
∫ t

t0

dτ
∫ τ

0
dt ′ J�r0(t

′, τ )
∂V (t ′, τ )

∂τ
.

The function X�r0(t) is the probability that the point O′ is transformed at time t under the
condition that it is located in the volume element d3�r0. The probability of the latter event is
d3�r0/V0, where V0 is the volume of the system considered. The probability X(t) for the point
O′ to be transformed under the condition that it will appear somewhere in the system, or the
probability of the point O′ falling in the transformed part of the system, is

X(t) = 1

V0

∫
V0

X�r0(t) d3�r0 (14)

where the integration is over the system volume.
Expression (14) is the desired volume fraction of the material transformed according to

the geometrical definition of probability [7]. If the system is infinite, then expression (14) is
regarded as the limit at V0 → ∞. However, it is important that finite domains naturally obey
this expression. Thus, the expressions obtained may also be regarded as a generalization of
expression (4) to the case of a finite domain. Even though the nucleation rate inside the domain
does not depend on �r , the function X�r0(t) depends on �r0. The reason for this is that generally
only a part of the critical region for the point O′ lies inside the domain. The size of this part
depends on �r0. This is shown in more detail in section 5 through the procedure of calculating
the volume fraction in a spherical domain.

3. Nucleation on plane, on a straight line, at a point

We shall use the indices s, l, c for a plane, a straight line and a point, respectively. Let the plane
considered be the yz-plane of the Cartesian frame of reference. Also, the straight line is the
z-axis and the point is the origin (the point O). The volume nucleation rate may be represented
in every case as follows:

I (i)
v (�r, t) =




Is(t)δ(x) i = s

Il(t)δ(x)δ(y) i = l

Ic(t)δ(x)δ(y)δ(z) i = c

(15)

where Ii(t), i = s, l, c, are the specific nucleation rates: Is (Il) is the number of centres
appearing on unit area (length) per unit time, Ic is the probability of the centre appearing at
the point per unit time.

If the plane is in the middle of a plate of thickness εs = 2L, the straight line is the axis
of a cylinder with cross-sectional area εl = πL2 ≡ s and the point is the centre of a sphere of
volume εc = (4π/3)L3 ≡ vc, then the mean volume nucleation rate for every case is

Ī (i)
v (t) = ε−1

i

∫
εi

I (i)
v (�r, t) dεi

or

Ī (s)
v (t) = σIs(t) Ī (l)

v (t) = λIl(t) Ī (c)
v (t) = nIc(t) (16)

where σ = (2L)−1 is the mean area in unit volume, λ = s−1 is the mean length in unit volume
and n = v−1

c is the mean number of points in unit volume.
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Without loss of generality, let us take the point O′ on the x-axis at the distance r0 from the
origin. As the angle θ of the spherical frame of reference with the point O′ as the origin, we
take the angle formed by the vector �R with the negative x-axis. The angle φ is in the yz-plane.
Then the components of the radius vector �r are x = r0 −R(t ′, t) cos θ , y = R(t ′, t) sin θ sin φ,
z = R(t ′, t) sin θ cosφ. Substituting these values into (15) and following the computational
scheme of section 1, we shall derive the desired result (see the appendix). However, it is
simpler to get the result by the critical region method immediately.

The critical region for the point O′ at time t ′ is the sphere of radius R(t ′, t). Either the
part of the plane of area Sr0(t

′, t) = π [R2(t ′, t) − r2
0 ] (the part of the straight line of length

lr0(t
′, t) = 2[R2(t ′, t) − r2

0 ]1/2) or the point may be located inside it. Let us define the time
tm(t, r0) by the equation

R(tm, t) = r0. (17)

At t ′ > tm the object considered is outside the critical region.
In order for the point O′ to be untransformed at time t , the new-phase centre is forbidden

to appear in the time interval 0 � t ′ � tm(t, r0) on the circle of area Sr0(t
′, t), on the segment

of length lr0(t
′, t), at the point O. The probabilities Q(i)

r0
(t) of these events can be calculated

by the method of reference [1]; the result is obvious:

Q(i)
r0
(t) = exp

[
−

∫ tm(t,r0)

0
Ii(t

′)ζ (i)
r0

(t ′, t) dt ′
]

r0 < Rm(t) (18)

where

ζ (i)
r0

(t ′, t) =




Sr0(t
′, t) i = s

lr0(t
′, t) i = l

1 i = c

and

Q(i)
r0
(t) = 1 r0 > Rm(t) (19)

since in this case the object is outside the critical region at all t ′ (equation (17) has no solution).
This is the form of expression (5) in this case. The advantage of the ‘shortened’ form of

the critical region method is even more apparent in the case of nucleation on a surface (line)
of arbitrary form. Evidently the result is analogous to (18):

Q
(i)

�r0
(t) =







exp

[
−

∫ tm(t,p)

0
Is(t

′)S�r0(t
′, t) dt ′

]
i = s

exp

[
−

∫ tm(t,p)

0
Il(t

′)l�r0(t
′, t) dt ′

]
i = l

p(�r0) < Rm(t)

1 p(�r0) > Rm(t)

(20)

where S�r0(t
′, t) is the area of the surface part (l�r0(t

′, t) is the length of the line part) enclosed
by the critical region at time t ′; p(�r0) is the shortest distance from the point O′ to the surface
(line). At t ′ > tm(t, p) the object remains outside the critical region. In the given case, the
quantities depend on all of the coordinates of the point O′, which is denoted by the index �r0.

To get the fraction of the material of the plate transformed, we integrate the function
X(s)

r0
(t) = 1 − Q(s)

r0
(t) over r0 according to (14):

X(s)(t) = 2
∫ L

0
X(s)

r0
(t)

dr0

2L
. (21)
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Denote by t∗ the time at which the nucleus appearing at t ′ = 0 reaches the plate boundary:
Rm(t

∗) = L. At t < t∗ (Rm(t) < L) this integral, in view of (19), reduces to the following
one:

X
(s)
1 (t) = 2σ

∫ Rm(t)

0
X(s)

r0
(t) dr0 = 2σRm(t)

∫ 1

0
X

(s)
ξ (t) dξ ξ = r0/Rm. (22)

At t > t∗, we use expression (21) itself for the volume fraction, which can also be represented
as

X
(s)
2 (t) =

∫ 1

0
X(s)

κ (t) dκ κ = r0/L. (23)

Finally, we obtain

X(s)(t) = η(t∗ − t)X
(s)
1 (t) + η(t − t∗)X(s)

2 (t) (24)

where η(x) is the symmetric unit function [8].
The same expression applies for the volume fractions of the cylinder and sphere. We have

for the cylinder

X
(l)
1 (t) =

∫ Rm(t)

0
X(l)

r0
(t)

2πr0 dr0

s
= 2πλR2

m(t)

∫ 1

0
X

(l)
ξ (t)ξ dξ (25)

X
(l)
2 (t) = 2

∫ 1

0
X(l)

κ (t)κ dκ (26)

and for the sphere

X
(c)
1 (t) =

∫ Rm(t)

0
X(c)

r0
(t)

4πr2
0 dr0

v
= 4πnR3

m(t)

∫ 1

0
X

(c)
ξ (t)ξ 2 dξ (27)

X
(c)
2 (t) = 3

∫ 1

0
X(c)

κ (t)κ2 dκ. (28)

At constant nucleation and growth rates, the integrals in the latter case are evaluated yielding
the following explicit time dependence:

X
(c)
1 (t) = 6

(Ict∗)3

{
(Ict)

3

6
− (Ict)

2

2
+ Ict − 1 + e−Ict

}
(29)

X
(c)
2 (t) = 1 − 6e−Ic(t−t∗)

(Ict∗)3

{
(Ict

∗)2

2
− Ict

∗ + 1 − e−Ict
∗
}

(30)

where

t∗ = L/u

Expression (24), with (29) and (30), gives the mean volume fraction of the sphere at time
t . The true fraction X

(c)
tr (t) = V (t ′, t)/v is a random quantity due to the randomness of the

appearance time t ′. The volume fraction (24) is obtained as a result of averaging X
(c)
tr (t) using

the function Ic exp(−Ict
′) which is the distribution function of the appearance time. Thus,

X
(c)
1 (t) =

∫ t

0
V (t ′, t)Iv(t ′) dt ′ (t < t∗)

X
(c)
2 (t) =

∫ t−t∗

0
vIv(t

′) dt ′ +
∫ t

t−t∗
V (t ′, t)Iv(t ′) dt ′ (t > t∗)

(31)

where Iv(t ′) = nIc exp(−Ict
′). It is easy to establish that these expressions yield (29) and (30).

The transformation time tf is infinite in this simple finite system. This fact is a clear
consequence of the randomness of the appearance time t ′. The mean transformation time is
t̄f = I−1

c + t∗. In the limiting case Ic → ∞, tf is obviously finite and equal to t∗.
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4. Nucleation on random planes, on straight lines, at points; another derivation of
Kolmogorov’s formula

In view of generality of the approach used we shall carry out consideration for these three
cases simultaneously.

Let either planes (straight lines) or points be distributed randomly in an infinite system.
For deriving the volume fractions of the material transformed at nucleation on these objects,
we use the critical region method again. We choose at random a point O′ in the system and
seek the probability Q(i)(t) that it will be untransformed at time t . The critical region for the
point O′ at time t ′ = 0 is a sphere of radius Rm(t). Let it either be intersected by N planes
(straight lines) or include N points. Denote by rk the distance from point O′ to the kth object,
k = 1, . . . , N . The probability q

(i)
N ({rk}, t) for the point O′ to be untransformed at time t at the

given N and realization of the set {rk} = {r1, r2, . . . , rN } is a product of the probabilities (18):

q
(i)
N ({rk}, t) =

N∏
k=1

Q(i)
rk
(t) =

N∏
k=1

exp

[
−

∫ tm(t,rk)

0
Ii(t

′)ζ (i)
rk

(t ′, t) dt ′
]

i = s, l, c. (32)

The desired function Q(i)(t) is obtained by averaging q
(i)
N ({rk}, t) over all rk-values and N :

Q(i)(t) =
∞∑

N=0

P (i)(N)

∫ Rm(t)

0
· · ·

∫ Rm(t)

0
q
(i)
N ({rk}, t)f (i)(r1, . . . , rN) dr1 · · · drN (33)

where f (i)({rk}) is the distribution function of the set {rk}, P (i)(N) is the probability of the
given N .

In order to deduce the expression for f (i)({rk}), we first choose the parametric space for
every kind of object. In the case of points, the parametric space is the coordinate space itself: the
point is determined by the coordinates (r, θ, φ); the volume element is dv = r2 sin θ dr dθ dφ.
We assume that the points are distributed according to the Poisson law: the probability for
the point to be in the volume element dv is equal to γc dv and does not depend on either
volume element shape or position. We divide the volume Vm(t) = (4π/3)R3

m(t) of the critical
region into layers of thickness dr; dv(r) = 4πr2 dr . Further, we use the following property
of the Poisson process [7]: the probability of the kth point being in the volume element dvk
under the condition that there are N points in the whole volume Vm(t) is equal to dvk/Vm (the
distribution over volume is uniform). Going from vk to rk , we find that the probability for the
kth point to be at the distances [rk, rk + drk] is equal to 4πr2

k drk/Vm. Also, all of the distances
rk are independent quantities. Consequently,

f (c)({rk}) =
N∏

k=1

f (c)(rk) (34)

where f (c)(rk) = 3r2
k /R

3
m.

A plane is uniquely determined by two angles θ , φ and the length rk of the perpendicular
to it from the point O′. The measure element for planes in the parametric space (r, θ, φ)

is dE(s) = sin θ dr dθ dφ [9]. We also assume the Poisson distribution for planes: the
probability for a plane to be in the ‘volume’ element dE(s) is γs dE(s). Further, we similarly
derive expression (34) with f (s)(rk) = 1/Rm for the set {rk} distribution.

Let us determine a straight line by its direction θ , φ and the polar coordinates r , β of
the intersection point of this line with the plane perpendicular to it and passing through the
point O′. Thus, the measure element is dE(l) = r dr dβ d�, and for the Poisson distribution
of straight lines (with the parameter γl), the probability for the kth line to be at the distances
[rk, rk + drk] from the point O′ is f (l)(rk) drk = 2rk drk/R2

m.
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Returning now to expression (33) we see that theN -dimensional integral is equal towN
i (t),

where

wi(t) =
∫ Rm(t)

0
Q(i)

r (t)f (i)(r) dr. (35)

Averaging using P (i)(N) = αN
i exp(−αi)/N ! yields

Q(i)(t) =
∞∑

N=0

αN
i

N !
e−αiwN

i = e−αi(t)(1−wi(t)). (36)

We determine the parameter αi for every kind of object. For points: αc = N̄ = Vm(t)n.
For planes, we express αs in terms of σ . The area Sr of the plane part located inside the critical
region is equal to π(R2

m − r2). Its mean value is

S̄r = π

∫ Rm(t)

0
(R2

m − r2)
dr

Rm

= 2

3
πR2

m.

The mean area in unit volume is σ = S̄r N̄/Vm = S̄rαs/Vm = αs/2Rm, from which

αs = 2σRm. (37)

Similarly, it is easy to get for straight lines

αl = πλR2
m. (38)

Substituting the αi-values obtained into (36), we find the fraction of the material trans-
formed for every case:

X(i)(t) = 1 − exp(−X
(i)
1 (t)) (39)

where the X
(i)
1 (t) are given by expressions (22), (25) and (27).

Consider in greater detail the case of nucleation at points. Expression (39) for this case
has the following form:

X(c)(t) = 1 − exp

{
−4πn

∫ Rm(t)

0

[
1 − exp

(
−

∫ tm(t,r)

0
Ic(t

′) dt ′
)]

r2 dr

}
. (40)

Let us introduce the function Īv(t) via the equality

Īv(t) = nIc(t) exp

[
−

∫ t

0
Ic(t

′) dt ′
]
. (41)

Its integral is

n0(t) =
∫ t

0
Īv(t

′) dt ′ = n

{
1 − exp

[
−

∫ t

0
Ic(t

′) dt ′
]}

. (42)

It is easily seen that the exponent in (40) is expressible in terms of Īv(t) as follows:

X(c)(t) = 1 − exp

{
−4π

∫ Rm(t)

0
r2 dr

∫ tm(t,r)

0
Īv(t

′) dt ′
}
. (43)

Changing the order of integration here, we obtain nothing more nor less than the formula of
Kolmogorov:

X(c)(t) = 1 − exp

{
−

∫ t

0
Īv(t

′)V (t ′, t) dt ′
}

(44)

from where it is seen that the function Īv(t
′) has the meaning of the mean volume nucleation

rate. This can be proved as follows.
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In the case of nucleation at points, the volume nucleation rate may be represented as

Iv(�r, t) = Ic(t)

Nf (t)∑
k=1

δ(�r − �rk) (45)

where �rk is the position vector of the kth point in any frame of reference, Nf (t) is the number of
‘non-activated’ points in the system (e.g. those points at which the nucleation has not occurred
by time t). We assume the volume V0 of the system to be large enough but finite and containing
N0 points. The number Nf is a random quantity distributed according to the binomial law

P(Nf ) = C
Nf

N0
φ(t)Nf [1 − φ(t)]N0−Nf

where

φ(t) = exp

[
−

∫ t

0
Ic(t

′) dt ′
]

is the probability for the point to be ‘non-activated’ by time t . Hence, we find N̄f (t) = N0φ(t),
so the averaging of Iv(�r, t), expression (45), over Nf and volume at V0 → ∞ yields
Īv(t) = Ic(t)nφ(t), i.e. expression (41).

In the limiting case of large values of Ic(t), the function Īv(t) has a δ-shaped form:
Īv(t) = nδ+(t), so expression (44) describes the case where all of the centres appear at t ′ = 0:

X(t) = 1 − exp[−nVm(t)]. (46)

Expression (44) shows that the process of nucleation at points can be regarded as the
process of homogeneous nucleation with the appropriate nucleation rate (41). The reverse
statement is also true: the process of homogeneous nucleation with the nucleation rate Iv(t)may
be represented as the process of nucleation at points. The corresponding specific nucleation
rate Ic(t) is easily derived from (41):

Ic(t) = Iv(t)
/(

n −
∫ t

0
Iv(t

′) dt ′
)

= Iv(t)

n − n0(t)
. (47)

The parameter n remains arbitrary under the single condition n > n0(t). Thus, the reverse
representation is not unique: expression (47) describes a family of curves corresponding to
different n-values. Two different situations are possible: n0(t) is either finite or infinite for
t → ∞.

Consider the latter case by examining the simplest example of Iv = constant = a. In this
case,

Ic(t) = a

n − at
. (48)

The number of centres appearing by time t , n0(t) = at , increases with time infinitely. Hence,
the parameter n must also be infinite. However, there is no contradiction here. The number
n0(t) can be represented as a sum: n0(t) = n

(r)
0 (t) + n

(f )

0 (t), where

n
(r)
0 (t) =

∫ t

0
Iv(t

′)Q(t ′) dt ′ n
(f )

0 (t) =
∫ t

0
Iv(t

′)X(t ′) dt ′. (49)

n
(r)
0 (t) is the number of actual centres, i.e. appearing in the untransformed volume; n(f )

0 (t) is
the number of centres appearing in the volume which is already transformed. The latter are
nothing but the fictitious centres, or ‘phantoms’, in the JMA approach. Their number increases
infinitely in the case of constant nucleation rate (n(r)

0 (t) is always finite). The divergence occurs
because formally the transformation time tf is infinite. Actually, it may of course be chosen
finite and determined by the equality Q(tf ) = Qmin, where Qmin is the minimal value of the
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volume fraction observed experimentally. Then the process is considered in the time interval
0 < t < tf , and some n > atf may be taken as the n-value in (48).

The established equivalence of the processes of homogeneous nucleation and nucleation
at points shows that the Avrami and Johnson–Mehl approaches are not alternative to each
other [2], but reduce to each other by means of relations (41) and (47), respectively.

Consider the limiting cases for planes. If the exponent in Q(s)
r0
(t), expression (18), is

small (small nucleation and growth rates, small times), then expression (22) changes to the
following one:

X
(s)
1 (t) = 2πσ

∫ Rm(t)

0
dr0

∫ tm(t,r0)

0
dt ′ Is(t ′)

[
R2(t ′, t) − r2

0

]
. (50)

Changing the order of integration here, we get

X
(s)
1 (t) =

∫ t

0
dt ′ Īv(t ′)V (t ′, t) Īv(t

′) = σIs(t
′). (51)

In the case of a large value of the exponent,

X
(s)
1 (t) = 2σRm(t). (52)

Corresponding limiting cases for the system of random planes are obtained by substituting
(51) and (52) into (39). The expression X(s)(t) = 1 − exp[−2σRm(t)] may be treated as the
volume fraction of infinite planar ‘nuclei’ formed at t ′ = 0.

One fact related to the one-dimensional asymptote (52) of the volume fraction is worthy
of notice, which applies in the case of competitive formation on the plane of two or more
different phases. Let two phases with nucleation and growth rates Is,k(t) and uk(t), k = 1, 2,
u2(t) > u1(t), be formed simultaneously. As was shown in reference [6], the approximation
of independent phases may be used in the given case for calculating the fractions of these
phases. Thus, we have

Q(s)
r0
(t) = exp[−Yr0,1(t) − Yr0,2(t)] (53)

where

Yr0,k(t) =




∫ tm,k(t,r0)

0
Is,k(t

′)Sr0,k(t
′, t) dt ′ r0 < Rm,k(t)

0 r0 > Rm,k(t).

The total volume fraction X(s)(t) of the material transformed is obtained by integration of the
expression 1 − Q(s)

r0
(t) over r0:

X(s)(t) = 2σRm,1(t)

{∫ 1

0

[
1 − e−Yξ,1(t)−Yξ,2(t)

]
dξ +

∫ Rm,2/Rm,1

1

[
1 − e−Yξ,2(t)

]
dξ

}
(54)

where ξ ≡ r0/Rm,1, t < t∗; t∗ is determined by the equality Rm,2(t
∗) = L.

In the limiting case of large values of Yξ,2(t), we have

X(s)(t) = 2σRm,2(t). (55)

Thus, the phase transformation process is governed by the second (fast-growing) phase. Grains
of the first (slow-growing) phase are ‘immured’ inside the layer of the second one and cannot
contribute to the incrementing of the transformed volume.
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5. Calculating the volume fraction in a spherical domain; homogeneous nucleation

Consider the process of phase transformation of the spherical domain of volume V0 =
(4π/3)R3

0 for homogeneous nucleation inside it of new-phase centres with the nucleation
rate I (t) and growth velocity u(t). Let the nuclei have spherical shape.

Take at random the point O′ in the domain. Let it be at distance r from the centre of the
domain which is the point O (figure 2). We seek the probability Q(r, t) that the point O′ will
be untransformed at time t . Let us specify the critical region for the point O′—the sphere of
radius R(t ′, t). In order for the point O′ to be untransformed, it is necessary and sufficient that
no centre of a new phase is formed inside the critical region in the time interval 0 � t ′ � t . The
probability of this event is given by expression (5), in which the variable r instead of vector �r0

will be used below.

r
O

O'

V0

Ω

Figure 2. The domain and the critical region for the point O′. The critical region part of the volume
�(r; t ′, t) = v(r; t ′, t) is marked out.

The new-phase centres can appear only inside the domain. At the same time, in general,
only a part of the critical region for the point O′ lies inside this domain. Denote by �(r; t ′, t)
the volume of this part (figure 2). Hence, calculating the probability Q(r, t), we must take
�(r; t ′, t) instead of V (t ′, t). Accordingly, the expression for Y (r, t) has the following form:

Y (r, t) =
∫ t

0
I (t ′)�(r; t ′, t) dt ′. (56)

The volume fraction Q(t) of the material untransformed at time t is the probability for
the point O′ to fall in the untransformed part of the domain:

Q(t) = 1

V0

∫ R0

0
Q(r, t)(4πr2) dr. (57)

Furthermore, the problem is that of how to find the explicit form of the function �(r; t ′, t)
depending on t , t ′ and r . For this purpose the following expression will be used. For two
overlapping spheres of radii r1, r2 and spacing between centres h, the volume of the part of
the second sphere lying inside the first sphere is equal to

v(r1, r2;h) = π

{
2

3
(r3

1 + r3
2 ) +

1

12
h3 − 1

2
h(r2

1 + r2
2 ) − 1

4

(r2
1 − r2

2 )
2

h

}
. (58)

Determine the times t1 and t2 by the equations

Rm(t1) = R0 Rm(t2) = 2R0. (59)

The following three cases with respect to time t arise.
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(1) Rm(t) < R0: t < t1. Determine the distance l0 by the equality

l0 = R0 − Rm. (60)

For 0 � r � l0 the critical region lies entirely inside the domain over the whole time
interval 0 � t ′ � t ; accordingly, �(r; t ′, t) = V (t ′, t). Determine the time tm(r, t) by the
equation

R(tm, t) = R0 − r. (61)

At l0 < r � R0 the critical region lies partially inside the domain in the interval
0 � t ′ < tm(r, t); accordingly, �(r; t ′, t) = v(R0, R(t ′, t); r) ≡ v(r; t ′, t). Further,
in the interval tm(r, t) � t ′ � t the critical region is entirely in the domain; hence,
�(r; t ′, t) = V (t ′, t). Thus,

Y1(r, t) =




∫ t

0
I (t ′)V (t ′, t) dt ′ 0 � r � l0∫ tm(r,t)

0
I (t ′)v(r; t ′, t) dt ′ +

∫ t

tm(r,t)

I (t ′)V (t ′, t) dt ′ l0 < r � R0.

(62)

(2) R0 � Rm(t) � 2R0: t1 � t � t2. Determine the distance l′0 by the equality

l′0 = Rm − R0 (63)

and the time t ′m(r, t) by the equation

R(t ′m, t) = R0 + r. (64)

Consider the case 0 < r < l′0. In figure 3, the positions of the critical region boundary
are shown for this case at different times t ′. In the time interval 0 � t ′ � t ′m(r, t)
the domain lies entirely inside the critical region; accordingly, �(r; t ′, t) = V0. In the
interval t ′m(r, t) < t ′ � tm(r, t), �(r; t ′, t) = v(r; t ′, t). And in the remaining interval
tm(r, t) < t ′ � t , �(r; t ′, t) = V (t ′, t). At l′0 � r � R0 we have

�(r; t ′, t) =
{
v(r; t ′, t) 0 � t ′ < tm(r, t)

V (t ′, t) tm(r, t) � t ′ � t .
(65)

O O'

V0

1
2

34

Figure 3. Positions of the critical region boundary at different times t ′: (1) 0 � t ′ < t ′m(r, t);
(2) t ′ = t ′m(r, t); (3) t ′m(r, t) < t ′ < tm(r, t); (4) t ′ = tm(r, t).
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Thus,

Y2(r, t) =




V0

∫ t ′m(r,t)

0
I (t ′) dt ′ +

∫ tm(r,t)

t ′m(r,t)
I (t ′)v(r; t ′, t) dt ′

+
∫ t

tm(r,t)

I (t ′)V (t ′, t) dt ′ 0 � r < l′0∫ tm(r,t)

0
I (t ′)v(r; t ′, t) dt ′ +

∫ t

tm(r,t)

I (t ′)V (t ′, t) dt ′ l′0 � r � R0.

(66)

(3) Rm(t) > 2R0: t > t2. As follows from the foregoing, in this case

�(r; t ′, t) =




V0 0 � t ′ � t ′m(r, t)
v(r; t ′, t) t ′m(r, t) < t ′ < tm(r, t)

V (t ′, t) tm(r, t) � t ′ � t

(67)

for arbitrary r-value. Accordingly,

Y3(r, t) = V0

∫ t ′m(r,t)

0
I (t ′) dt ′ +

∫ tm(r,t)

t ′m(r,t)
I (t ′)v(r; t ′, t) dt ′

+
∫ t

tm(r,t)

I (t ′)V (t ′, t) dt ′ 0 � r � R0. (68)

The volume fraction of the material transformed in every case is

Xi(t) = 1 − 1

V0

∫ R0

0
e−Yi (r,t)(4πr2) dr i = 1, 2, 3. (69)

The volume fraction at any time t is given by the following expression:

X(t) = η(t1 − t)X1(t) + η(t2 − t)η(t − t1)X2(t) + η(t − t2)X3(t) (70)

where η(x) is the symmetric unit function [8].
The case of arbitrary shape of the domain as well as arbitrary nucleus shape permitted by

Kolmogorov’s model can be considered in a similar way, following the procedure described
above.

6. The case of constant nucleation and growth rates

For analysis of the effect of the finiteness of the system on the rate of a phase transformation
process, we consider the case of time-independent nucleation and growth rates. First, we study
the time dependence of the volume fraction at fixed value of R0. Let us introduce the following
dimensionless variables: time τ = ut/R0 = t/t∗, t∗ = R0/u, distance x = r/R0 and the
parameter α = (π/3)(I/u)R4

0 . The calculation of integrals in the expressions for Yi yields
the following expressions for the volume fraction of the initial phase for every case described
above:

(1) τ < 1:

Q1(τ ) = (1 − τ)3e−ατ 4
+ 3

∫ 1

1−τ

e−αφ1(x,τ )x2 dx (71)

where

φ1(x, τ ) =
4∑

k=−1

Pk(τ)x
k
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and the coefficients Pk(τ) are as follows:

P−1(τ ) = −(3/20)τ 5 + (1/2)τ 3 − (3/4)τ + 2/5

P0(τ ) = (1/2)τ 4 + 2τ − 3/2

P1(τ ) = −(1/2)τ 3 − (3/2)τ + 2

P2 = −1

P3(τ ) = (1/4)τ

P4 = 1/10.

(2) 1 � τ � 2:

Q2(τ ) = 3

{∫ τ−1

0
e−αφ2(x,τ )x2 dx +

∫ 1

τ−1
e−αφ1(x,τ )x2 dx

}
(72)

where

φ2(x, τ ) =
4∑

k=0

Pk(τ)x
k

and

P0(τ ) = 4τ − 3

P1 = 0

P2 = −2

P3 = 0

P4 = 1/5.

(3) τ > 2:

Q3(τ ) = 3
∫ 1

0
e−αφ2(x,τ )x2 dx. (73)

The volume fraction of the material transformed is given by expression (70) with the
replacements t → τ , t1 → τ1 = 1, t2 → τ2 = 2. The KJMA expression in this notation has
the following form:

XK(τ) = 1 − e−ατ 4
. (74)

In figure 4, the dependence X(τ) at different values of α is shown in comparison with
that given by expression (74) for infinite space. Also, the function >X(τ) = XK(τ) − X(τ)

giving the error yielded by use of (74) is presented.
Furthermore, consider the dependence of the volume fraction on radius R0 of the domain

at fixed time. To this end, let us introduce the following dimensionless quantities: radius
ρ = R0/ut , distance y = r/ut and the parameter β = (π/3)Iu3t4. The expressions for the
volume fraction Qi(ρ) of the initial phase in three cases described above have the following
forms:

(1) ρ � 1:

Q1(ρ) =
(
ρ − 1

ρ

)3

e−β +
3

ρ3

∫ ρ

ρ−1
e−βψ1(y,ρ)y2 dy (75)

where

ψ1(y, ρ) =
4∑

k=−1

Pk(ρ)y
k
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Figure 4. The volume fractions X(τ) (full lines), XK(τ) (dashed lines) and >X(τ) = XK(τ)−
X(τ) (dotted lines) in the process of homogeneous nucleation. The groups of curves (1, 1′, 1′′)
and (2, 2′, 2′′) are for α = 0.1 and α = 10, respectively.

and

P−1(ρ) = (2/5)ρ5 − (3/4)ρ4 + (1/2)ρ2 − 3/20

P0(ρ) = −(3/2)ρ4 + 2ρ3 + 1/2

P1(ρ) = 2ρ3 − (3/2)ρ2 − 1/2

P2(ρ) = −ρ2

P3 = 1/4

P4 = 1/10.

(2) 1/2 < ρ < 1:

Q2(ρ) = 3

ρ3

{∫ 1−ρ

0
e−βψ2(y,ρ)y2 dy +

∫ ρ

1−ρ

e−βψ1(y,ρ)y2 dy

}
(76)

where

ψ2(y, ρ) =
4∑

k=0

Pk(ρ)y
k

and

P0(ρ) = −3ρ4 + 4ρ3

P1 = 0

P2(ρ) = −2ρ3

P3 = 0

P4 = 1/5.

(3) 0 < ρ � 1/2:

Q3(ρ) = 3

ρ3

∫ ρ

0
e−βψ2(y,ρ)y2 dy. (77)
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The volume fraction of the transformed material is

X(ρ) = η

(
1

2
− ρ

)
X3(ρ) + η

(
ρ − 1

2

)
η(1 − ρ)X2(ρ) + η(ρ − 1)X1(ρ) (78)

where Xi(ρ) = 1 − Qi(ρ).
The KJMA formula in this notation has the form

XK(ρ) = exp(−β). (79)

In figure 5, the dependence X(ρ) is shown for different values of β.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

2'

2

1'

1

X
( ρ

)

ρ

Figure 5. The volume fractions X(ρ) (full lines) and XK(ρ) (dashed lines) at fixed time. The pairs
of curves (1, 1′) and (2, 2′) are for β = 1 and β = 2, respectively.

Consider some limiting cases of the expressions derived. At τ → 0 the addend in (71)
has the following expansion in terms of τ : 3τ − 3τ 2 + τ 3 + O(τ 5). Accordingly, the volume
fraction is

Q(τ) = Q1(τ ) = e−ατ 4 [
1 + O(ατ 5)

]
. (80)

That is, we get the KJMA expression, as we must. Small τ -values correspond to small times
and large R0. The condition τ � 1 (Rm � R0) has the following meaning. It is proposed
in deriving the expression for the volume fraction in reference [1] that the point O′ lies at
a distance greater than Rm(t) from the domain boundary. To allow neglect of the volume
>V = (4π/3)[R3

0 − (R0 − Rm)
3] of the boundary layer, the condition >V/V0 � 1 or

Rm/R0 � 1 must be obeyed.
At τ > 2 we have

Q(τ) = Q3(τ ) = J (α)e−4ατ = J (α)e−IV0t (81)

where

J (α) ≡ 3
∫ 1

0
eα(3+2x2−x4/5)x2 dx.
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At α → 0, J (α) → 1. Thus, we get the following result: the time dependence of the volume
fraction differs qualitatively from that in infinite space (it cannot therefore be derived from the
latter, equation (74), by use of correction factors). That is, the Avrami exponent nA decreases
with time from 4 to 1. The Avrami exponent [4, 13] is the slope of the tangent to the plot of
ln(− ln(1−X(t))) against ln t (figures 6, 7). In other words, the finiteness of the domain leads
to a slowing down of the transformation process in comparison with the nucleation in infinite
space. The fact that the dependence nA(τ) reaches unity not at τ = 2 but later is due to the
presence of the factor J (α). It is not difficult to derive from (81) the following expression for
nA(ξ), where ξ ≡ ln τ :

nA(ξ) = 1

1 − z(α) exp(−ξ)
. (82)

Here, ξ > ln 2 and z(α) ≡ [ln J (α)]/4α � 1.
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Figure 6. The function ln(− ln(1 − X(τ))) versus ln τ for the case of homogeneous nucleation
with α = 0.1. The dashed line is for XK(τ).

At ρ → 0 we get from (77)

Q(ρ) = Q3(ρ) = e−4βρ3 [
1 + O(ρ4)

]
. (83)

This is expression (81) again, with J (α) = 1 (α → 0 at ρ → 0). The function
Q(t) = exp(−IV0t) is the probability that no centre of a new phase appears in the domain by
time t . This is a volume fraction at small R0 and large t , since averaging over r is not essential
in this case.

In the case ρ → ∞ we obtain from (75)

Q(ρ) = Q1(ρ) = e−β. (84)

That is, we have the KJMA expression for XK(t) again.
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Figure 7. The dependence of the Avrami exponent nA on ln τ corresponding to figure 6.

7. Heterogeneous nucleation

Let us derive the expression for the volume fraction in the case of nucleation at fixed points
randomly distributed over the domain (for example, on foreign particles) under the condition
that all of the new-phase centres appear at t ′ = 0. Two variants of the problem are possible. In
the first one, the points are distributed with the mean density n; their number in the domain is a
random quantity. For this case, the dependence of the volume fraction on time is derived from
the general solution of section 5 with the use of a δ-shaped representation of the nucleation rate:

I (t ′) = nδ+(t
′). (85)

We use the dimensionless variables τ and x as well as the parameter γ = nV0 =
(4π/3)nR3

0 which is the mean number of particles in the domain. Substituting r1 = R0,
r2 = Rm(t) and h = r into expression (58) and going to dimensionless variables, we obtain

v(r1, r2;h) = V0f (x, τ )

where

f (x, τ ) = 1

2
(1 + τ 3) +

1

16
x3 − 3

8
x(1 + τ 2) − 3

16

(1 − τ 2)2

x
. (86)

The expressions for Qi(τ) are the following:

(1) τ < 1:

Q
(h)
1 (τ ) = (1 − τ)3e−γ τ 3

+ 3
∫ 1

1−τ

e−γf (x,τ )x2 dx. (87)

(2) 1 � τ � 2:

Q
(h)
2 (τ ) = (τ − 1)3e−γ + 3

∫ 1

τ−1
e−γf (x,τ )x2 dx. (88)
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(3) τ > 2:

Q
(h)
3 (τ ) = e−γ . (89)

The volume fraction X(h)(τ ) of the material transformed is given by expression (70) as
before, while in the case of infinite space it is given by the following one:

X
(h)
K (τ ) = 1 − e−γ τ 3

. (90)

In figure 8, the dependences X(h)(τ ) and X
(h)
K (τ ) together with

>X(h)(τ ) = X
(h)
K (τ ) − X(h)(τ )

are shown for different γ -values.
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Figure 8. The volume fractions X(h)(τ ) (full lines), X

(h)
K (τ) (dashed lines) and >X(h)(τ ) =

X
(h)
K (τ)− X(h)(τ ) (dotted lines) in the first type of heterogeneous nucleation at γ = 1 (1, 1′, 1′′)

and γ = 10 (2, 2′, 2′′).

It is seen from (87)–(89) that the Avrami exponent decreases with time from 3 to 0.
In the second variant of heterogeneous nucleation, the numberN of particles in the domain

is fixed. We assume a uniform distribution of particles over volume: the probability for any
particle to be in the volume >v is equal to >v/V0 and does not depend on either the shape or
position of this volume. In this case, the binomial distribution applies: the probability that m
particles are located inside the volume >v is

PN(m) = Cm
N

(
>v

V0

)m [
1 − >v

V0

]N−m

. (91)

In particular, the probability that there are no particles inside the volume >v is equal to

PN(0) =
[

1 − >v

V0

]N

. (92)

Setting >v = �(t, r), �(t, r) is equal to either Vm(t) or v(R0, Rm(t); r) or V0; we see
that expression (92) replaces expression (5) in the case given. It is not difficult to get for the
three cases described above:
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(1) τ < 1:

Q
(N)
1 (τ ) = (1 − τ)3

[
1 − τ 3

]N
+ 3

∫ 1

1−τ

[1 − f (x, τ )]N x2 dx (93)

where f (x, τ ) is given by expression (86).
(2) 1 � τ � 2:

Q
(N)
2 (τ ) = 3

∫ 1

τ−1
[1 − f (x, τ )]N x2 dx. (94)

(3) τ > 2:

Q
(N)
3 (τ ) = 0. (95)

The volume fraction of the transformed material is

X(N)(τ ) = η(1 − τ)X1(τ ) + η(τ − 1)η(2 − τ)X2(τ ) + η(τ − 2). (96)

In the case N = 1, where the nucleation occurs at the centre of the domain,

X(1)
c (τ ) = η(1 − τ)τ 3 + η(τ − 1). (97)

In figure 9, the dependence X(N)(τ ) for different N -values is shown.
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Figure 9. The volume fractions X(N)(τ ) in the second type of heterogeneous nucleation. The
curves 1, 2, 3 correspond to N = 1, 10 and 100. The dashed line represents the dependence
X

(1)
c (τ ), equation (97).

8. Discussion

As follows from the foregoing, the geometrical-probabilistic approach, in the form of the
critical region method, is effective in solving different problems involved in calculating volume
fractions. Also, the undoubted advantage of this approach is the rigour: the results are con-
sequences of the initial premises.
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Some comments concerning the subject of section 4 should be made. Nucleation at
random points was considered for the first time by Avrami [4], who believed that phase trans-
formation generally follows this scenario. Nucleation on random planes and straight lines
was considered by Cahn [10] as applied to the problem of nucleation on grain boundaries and
edges. The consideration was in the framework of the JMA approach and expressions for the
volume fractions at constant nucleation and growth rates were obtained.

However, this approach, which is also called the mean-field approximation, is intuitive but
not rigorous mathematically. It can yield both exact and approximate results. An example of the
former is Kolmogorov’s formula which is also obtained in the JMA approach. As an example
of the latter case, the volume fractions of competing phases may be considered: the JMA
approach yields approximate expressions for them [6]. This was the reason for reconsidering
the expressions of reference [10]. The derivation of these expressions performed in the present
paper supports the results of reference [10]: expressions (39) at constant nucleation and growth
rates go into those obtained by Cahn. As is clear from the theory of section 3, the exactness
of the mean-field approach in this problem is a consequence of the Poisson distribution law
for the objects. This kind of distribution is frequently found in physical systems. However,
cases of inhomogeneous distribution of the objects are also possible. For example, the points
(the particles on which nucleation occurs) may be non-uniformly distributed over a volume
for various reasons (γc depending on �r). These cases can also be considered in the framework
of the theory of sections 3 and 1 in view of the corresponding modifications. In particular, the
function Q(i)(t) calculated by the critical region method according to the scheme of section 3
will depend on the radius vector �r0 of the point O′ in any frame of reference, so expression (14)
must be used for calculating the volume fraction. The detailed consideration of these cases is
beyond the scope of this paper.

The expressions obtained in sections 5–7 yield the volume-fraction value, X(t), averaged
over an ensemble of identical systems (see also the similar remark at the end of section 3). The
volume-fraction value, Xi(t), in the individual system is obviously a random quantity, since it
is a result of the realization of the random process. If we denote by p(Xi, t) the probability
for the volume fraction at time t to be in the interval [Xi,Xi + dXi], then the mean value is

X(t) =
∫ 1

0
Xip(Xi, t) dXi. (98)

In terms of an ensemble of Na systems, expression (98) is replaced by the following:

X(t) = lim
Na→∞

X(Na, t) X(Na, t) = 1

Na

Na∑
i=1

Xi(t). (99)

Let >Xi(t) ≡ Xi(t) − X(t) be the deviation from the mean value and let σ(t) ≡
M{[Xi(t) − X(t)]2} be the variance. Then we have for the deviation δ(Na, t) of the volume
fraction X(Na, t) from its mean

δ(Na, t) ≡ X(Na, t) − X(t) = σ(t)√
Na

χ(Na, t) (100)

where

χ(Na, t) ≡ 1√
Naσ(t)

Na∑
i=1

>Xi(t).

According to Lyapunov’s theorem [7], χ(Na, t) has the normal distribution for Na → ∞,
so the following estimate for the probability of the inequality χ(Na, t) < ε applies for
sufficiently large Na:

p {χ(Na, t) < ε} � 1√
2π

∫ ε

−∞
e−(z2/2) dz. (101)
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Hence, we find

p {δ(Na, t) < ε} � 1√
2π

∫ √
Naε/σ(t)

−∞
e−(z2/2) dz. (102)

The right-hand side of this equality is practically equal to unity at√
Naε/σ(t) � 3.

Hence, for the given accuracy ε, the corresponding value of Na is about (3σ(t)/ε)2.
The two variants of heterogeneous nucleation considered above may correspond to the

following experimental conditions in the case of crystallization of liquid drops. In the first
variant, the drop is extracted at random from the bulk of a liquid in which the foreign particles
are distributed with the mean density n. In this case, the number of particles in the drop is
random including zero. The latter case leads to the final value of X(h)(τ ) being less than unity
(figure 8).

In the second variant of heterogeneous nucleation, it is known that there are N particles in
the drop. Evidently, the expressions for X(h)(t) may be obtained by averaging the expressions
for X(N)(t) over all N :

X(h)(t) =
∞∑

N=0

P(N)X(N)(t) P (N) = γ N

N !
e−γ . (103)

In particular, at t > 2t∗ ≡ tf , X(N)(t) = 1 at N � 1 and X(0) = 0. Consequently,

X(h)(t > tf ) =
∞∑

N=1

P(N) = 1 − e−γ .

In turn, the expressions for X(N)(t) may be obtained by averaging the volume fraction
X(N)(�r1, �r2, . . . , �rk; t), at the location of the particles at the fixed points �rk , over all �rk . It is
seen from figure 9 for the example N = 1 how such averaging changes the time dependence of
the volume fraction. In particular, the transformation time tf is doubled. This is due to taking
into account the particle positions near the domain boundary.

As illustrated in figure 4, the departure of X(τ) from XK(τ) increases with decrease in
α, which, in particular, corresponds to decrease in R0. The parameter α has the following
meaning: 4α = IV0t

∗ is the mean number of centres formed in the domain during time t∗.
For increasing α the curves X(τ) and XK(τ) come closer together in the sense of numerical
values, but the qualitative distinction between them remains. However, this distinction can
no longer be detected experimentally at sufficiently large α, since the phase transformation is
finished (X(τ) → 1) at small τ , so the process is described with great accuracy by the KJMA
expression over the whole time interval. The condition of the completion of the process may
be formulated as ατ 4

f � 1, where τf is the transformation time. It is not difficult to derive

that the mean linear size L̄ of a nucleus in the system in the final state is of order (I/u)−1/4.
Hence, we get one more representation for α: α � (R0/L̄)4. For τf , we have τf � L̄/R0.
Consequently, the condition for applicability of the KJMA expression with respect to the α-
values, α � 1, becomes R0/L̄ � 1. It is easy to show that the condition γ � 1 for the
applicability of the KJMA expression to the first type of heterogeneous nucleation is reduced
to the same inequality.

In conclusion, let us consider the conditions under which the deviation from the KJMA
law takes place, by looking at the example of a metastable (supercooled) liquid crystallization.
In references [11, 12], the kinetics of crystallization and amorphization of Pd82Si18 alloy was
described. The values of the parameters included in the expressions given below are taken
from these works. The expression for the nucleation rate of the crystalline nuclei and that for
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their growth velocity (for the approximation of a planar interface) [13] may be represented in
the following form [12]:

I (T ) = 2Nν

(
σ

T

)1/2

exp

[
−>g + >Gc(T )

T

]
(104)

u(T ) = aν exp

(
−>g

T

) [
1 − exp

(
−>µ(T )

T

)]
. (105)

Hereafter, all the quantities with energy dimensions are reduced to kTm, k is the Boltzmann
constant, Tm is the melting temperature. Accordingly, the temperature T is dimensionless (in
units of Tm); Tm = 1. The meaning of the quantities in (104) and (105) is as follows.

>Gc(T ) is the work done in achieving critical size (Rc(T )) nucleus formation:

Rc(T ) = 2σ

>µ(T )
a (106)

>Gc(T ) = 16π

3

σ 3

>µ2(T )
(107)

where σ ≡ σ ′a2/kTm (σ ′ is the surface tension on the crystal–liquid interface); >µ(T ) is the
difference in chemical potential of atoms in the two phases. There are different approximations
for this significant function, e.g. the expression of Thomson and Spaepen [14]:

>µ(T ) = 2hmT (1 − T )

1 + T
(108)

where hm = 0.92 is the heat of melting per atom. The expansion of >µ(T ) in terms of T in
the vicinity of Tm [12] also may be used instead of (108).

The remainder of the parameters are as follows: a = 2.26 × 10−8 cm is the interatomic
distance; N = 8.7 × 1022 cm−3 is the number of atoms in unit volume; ν = 1013 s−1 is the
frequency of atom vibrations; >g = 10 (this corresponds to about 1 eV) is the energy of
activation of atom jumps; σ � 0.43hm [15].

In figure 10, the temperature dependences of the nucleation rate, growth velocity and
critical radius are shown on the same scales (Imax � 1019 cm−3 s−1 and umax � 0.3 cm s−1 are
the maximal values of I (T ) and u(T ); R′ = Rc(0.995) � 172a). The characteristic feature of
this figure is that the maxima of I (T ) and u(T ) are separated: the former is located at deeper
supercooling than the latter. The critical radius decreases rather rapidly with decrease in
temperature. The nucleation rate becomes appreciable when the critical radius becomes small
(this corresponds to the fact that the probability of large fluctuations is vanishingly small).
At the same time, the nucleation rate remains small enough up to some temperature. Thus,
there is a temperature interval in which the values of the parameter α are sufficiently small
for macroscopic values of the system size R0. Notice that the condition α � (R0/L̄)4 � 1
considered above corresponds to the multidroplets (MD) regime [5, 16, 17]. Accordingly, the
deviation from the KJMA law considered here occurs beyond this regime, when this condition
is not satisfied.

Consider the following dependence:

R0(T ) = α1/4L̄(T ) =
(
αu(T )

I (T )

)1/4

. (109)

For definiteness, let α = 1 (in this case, the deviation from the KJMA law is distinct—see
figure 4—max(>X(τ)) � 0.25). Letting, as an example, T � 0.84, we get, from (104)
and (105), I (0.84) � 16 cm−3 s−1, u(0.84) � 0.23 s−1 cm, and it follows from (109) that
R0 � 0.34 cm, which is a macroscopic size. At the same time, Rc(0.84) � 6a � L̄.
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Figure 10. The temperature dependences of the nucleation rate (I ), the growth velocity (u) and the
critical radius (Rc)—left Y -axis. Dashed lines represent the dependence (109) for α = 1 (1) and
α = 104 (2)—right Y -axis. The region above the curve 2 is that of the MD regime. The marked
deviations from the KJMA law occur in the region near and below the curve 1.

In figure 10, the dependence (109) for α = 1 is shown by dashed line 1. The deviation
from the KJMA law at some temperature may be observed for sizes R0 near this curve and
below it. If we assume α = 104 (R0/L̄ = 10, max(>X(τ)) � 0.02) as the lowest limit of
α for the MD regime, then this regime is operative for all temperatures in the region above
curve 2 in figure 10 (this is the dependence (109) for α = 104). It should be noted that the
condition Rc � L̄ is satisfied here down to the deepest supercooling (L̄(0.6)/Rc(0.6) � 70),
though, as a rule, such supercooling is not achievable in practice.

The pattern shown in figure 10 is typical for the phenomena of crystallization and
amorphization of a supercooled liquid. It is apparently rather general and also arises in other
cases of phase transformations with homogeneous nucleation rate. In reference [5], the KJMA
model was applied to the description of the Ising lattice-gas kinetics at mesoscopic scales
of length and time. The excellent agreement between these two models was demonstrated
in two dimensions and for moderately strong fields. The metastable phase decay picture
of reference [5] is similar to that just considered. The magnetic field H plays the role of
the temperature in figure 10 (the temperature itself is a fixed parameter therein). A test of
the KJMA picture was carried out in the MD regime. Equation (109) for α = 1 limiting this
regime is that for the dynamic spinodal (DSP) [5]. This equation determines the R(DSP)

0 (H, T )

dependence, so the noticeable deviations from the KJMA law should occur at system sizes
R0 ∼ R

(DSP)
0 and to a greater extent at R0 < R

(DSP)
0 . At the same time, these sizes may

be still macroscopic, 1 � Rc � L̄ ∼ R0, since R
(DSP)
0 is large in the region of weak fields

(which corresponds to slight supercooling in figure 10). As all of these conditions are fulfilled,
expressions (71)–(73) for the volume fraction should be used instead of (74).
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Appendix

In the case of nucleation on a plane, expression (8) has the following form:

J (s)
r0

(t ′, t) = 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θIs(t

′)δ(r0 − R(t ′, t) cos θ). (A.1)

In order to integrate over θ , we use the following property of the δ-function:

δ(x(θ)) = 1

|dx/dθ |
∣∣∣∣
θ=θ0

δ(θ − θ0)

where θ0 is the root of the equation

r0 − R(t ′, t) cos θ = 0. (A.2)

This equation is valid only at R(t ′, t) � r0. Hence, the maximal value of t ′ which is denoted
by tm(t, r0) is determined by equation (17). At tm < t ′ < t , Jr0(t

′, t) = 0. We shall take this
fact into account with the help of the asymmetric unit function η−(x) [8].

As a result of integration of (A.1), we get

J (s)
r0

(t ′, t) = Is(t
′)η−(R(t ′, t) − r0)

2R(t ′, t)
. (A.3)

For nucleation on a straight line and at a point, we have respectively

J (l)
r0

(t ′, t) = 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θIl(t

′)δ(r0 − R(t ′, t) cos θ)δ(R sin θ sin φ)

= Il(t
′)η−(R(t ′, t) − r0)

2πR2(t ′, t) sin θ0
(A.4)

J (c)
r0

(t ′, t) = 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θIc(t

′)δ(r0 − R(t ′, t) cos θ)δ(R sin θ sin φ)

× δ(R sin θ cosφ)

= 2Ic(t ′)η−(R(t ′, t) − r0)δ(R sin θ0)

4πR2(t ′, t) sin θ0
. (A.5)

Substituting sin θ0 =
√
R2 − r2

0/R into (A.5), we find

2δ(R sin θ0)

sin θ0
= 2δ(R − r0)η−(R − r0) dR = δ+(R − r0) dR = dη+(R − r0).

Substituting the J (i)
r0

-values into (10), we obtain

dPi(t
′, t) = Ii(t

′)η−(R − r0) dt ′ dζ (i)
r0

(t ′, t) (A.6)

where ζ (i)
r0

(t ′, t) is given by (18); in the case of points, we put ζ (c)
r0

(t ′, t) = η+(R(t ′, t) − r0).
Thus, we have the following expression for Y (i)

r0
(t):

Y (i)
r0

(t) =
∫ t

t0

dτ
∫ tm(τ,r0)

0
dt ′ Ii(t ′)

∂ζ (i)
r0

(t ′, τ )
dτ

(A.7)

Changing the order of integration here, we get finally

Y (i)
r0

(t) =




∫ tm(t,r0)

0
dt ′ Ii(t ′)ζ (i)

r0
(t ′, t) r0 < Rm(t)

0 r0 > Rm(t).

(A.8)
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